New BODIPY lipid probes for fluorescence studies of membranes.
نویسندگان
چکیده
Many fluorescent lipid probes tend to loop back to the membrane interface when attached to a lipid acyl chain rather than embedding deeply into the bilayer. To achieve maximum embedding of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophore into the bilayer apolar region, a series of sn-2 acyl-labeled phosphatidylcholines was synthesized bearing 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene-8-yl (Me(4)-BODIPY-8) at the end of C(3)-, C(5)-, C(7)-, or C(9)-acyl. A strategy was used of symmetrically dispersing the methyl groups at BODIPY ring positions 1, 3, 5, and 7 to decrease fluorophore polarity. Iodide quenching of the phosphatidylcholine probes in bilayer vesicles confirmed that the Me(4)-BODIPY-8 fluorophore was embedded in the bilayer. Parallax analysis of Me(4)-BODIPY-8 fluorescence quenching by phosphatidylcholines containing iodide at different positions along the sn-2 acyl chain indicated that the penetration depth of Me(4)-BODIPY-8 into the bilayer was determined by the length of the linking acyl chain. Evaluation using monolayers showed minimal perturbation of <10 mol% probe in fluid-phase and cholesterol-enriched phosphatidylcholine. Spectral characterization in monolayers and bilayers confirmed the retention of many features of other BODIPY derivatives (i.e., absorption and emission wavelength maxima near 498 nm and approximately 506-515 nm) but also showed the absence of the 620-630 nm peak associated with BODIPY dimer fluorescence and the presence of a 570 nm emission shoulder at high Me(4)-BODIPY-8 surface concentrations. We conclude that the new probes should have versatile utility in membrane studies, especially when precise location of the reporter group is needed.
منابع مشابه
Single molecule probes of membrane structure: orientation of BODIPY probes in DPPC as a function of probe structure.
Single molecule fluorescence measurements have recently been used to probe the orientation of fluorescent lipid analogs doped into lipid films at trace levels. Using defocused polarized total internal reflection fluorescence microscopy (PTIRF-M), these studies have shown that fluorophore orientation responds to changes in membrane surface pressure and composition, providing a molecular level ma...
متن کاملDi- and tri-oxalkyl derivatives of a boron dipyrromethene (BODIPY) rotor dye in lipid bilayers.
The environment-sensitive fluorescent probes provide excellent tools for studying membranes in their native state. We have modified the BODIPY-based fluorescent molecular rotor by increasing the number of alkyl moieties from one to two or three to achieve a more defined and deeper positioning of the probe in membranes. Detailed characterisation of fluorescence properties and localisation/orient...
متن کاملImaging phase separation in model lipid membranes through the use of BODIPY based molecular rotors.
In order to fully understand the dynamics of processes within biological lipid membranes, it is necessary to possess an intimate knowledge of the physical state and ordering of lipids within the membrane. Here we report the use of three molecular rotors based on meso-substituted boron-dipyrrin (BODIPY) in combination with fluorescence lifetime spectroscopy to investigate the viscosity and phase...
متن کاملA novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor
A series of ceramide analogues bearing the fluorophore boron dipyrromethene difluoride (BODIPY) were synthesized and evaluated as vital stains for the Golgi apparatus, and as tools for studying lipid traffic between the Golgi apparatus and the plasma membrane of living cells. Studies of the spectral properties of several of the BODIPY-labeled ceramides in lipid vesicles demonstrated that the fl...
متن کاملEffect of cholesterol on lateral diffusion of fluorescent lipid probes in native hippocampal membranes.
Cholesterol is an abundant lipid of mammalian membranes and plays a crucial role in membrane organization, dynamics, function and sorting. The role of cholesterol in membrane organization has been a subject of intense investigation that has largely been carried out in model membrane systems. An extension of these studies in natural membranes, more importantly in neuronal membranes, is important...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 48 7 شماره
صفحات -
تاریخ انتشار 2007